Chaotic Dynamics
Under construction.

Conference Proceedings papers

  1. Robert M. Corless , ``Bifurcation in a Flow-Induced Vibration Model'', Proceedings of the Fields Institute Workshop on Normal Forms and Homoclinic Chaos, 1992, W. F. Langford and W. Nagata, eds, Fields Institute Communications, vol. 4, (1995) 43--59.
  2. Robert M. Corless & S. Yu. Pilyugin, ``Approximate and Real Trajectories for Generic Dynamical Systems'', J. Mathematical Analysis & Applications 189 (1995) 409--423.
  3. Robert M. Corless & S. Yu. Pilyugin, ``Evaluation of Upper Lyapunov Exponents on Hyperbolic Sets'', J. Mathematical Analysis & Applications 189 (1995) 145--159.
  4. Robert M. Corless , ``Error Backward'', Proceedings of Chaotic Numerics, Geelong, 1993, P. Kloeden and K. Palmer, eds, AMS Contemporary Mathematics 172 (1994) 31--62.
  5. RMC, ``Chaos in a Flow-Induced Vibration Model'', Proc. ASME International Symposium on Flow-Induced Vibrations and Noise, Chicago, 1988, vol. 7, 77--85, M. M. Reischman, M. P. Paidoussis, R. J. Hansen, eds.

Journal Papers

  1. What Good is Numerical Simulation for Chaotic Dynamical Systems? , Computers in Mathematics with Applications, 28:323--334, 1995.
  2. Robert M. Corless , ``Continued Fractions and Chaos'', The American Mathematical Monthly vol. 99, no. 3, March (1992) 203--215. An on-line, ``organic'' version contains rather a lot of expository extra material, including a new definition of ``sensitive dependence on initial conditions'', and tutorial material on Lyapunov exponents prepared by Dhavide Aruliah.
  3. Robert M. Corless , ``Defect-Controlled Numerical Methods and Shadowing for Chaotic Differential Equations'', Physica D vol. 60 (1992) 323--334.
  4. Robert M. Corless , C. Essex , & M. A. H. Nerenberg , ``Numerical methods can suppress chaos'', Physics Letters A, 157, 1, (1991) 27--36.
  5. Robert M. Corless , G. W. Frank, & J. Graham Monroe, ``Chaos and Continued Fractions'', Physica D 46 (1990) 241--253