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Rounding coefficients and artificially underflowing terms
in non-numeric expressions
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Abstract

This article takes an analytical viewpoint to address the following questions:
1. How can we justifiably beautify an input or result sum of non-numeric terms that has

some approximate coefficients by deleting some terms and/or rounding some coefficients to
simpler floating-point or rational numbers?

2. When we add two expressions, how can we justifiably delete more non-zero result
terms and/or round some result coefficients to even simpler floating-point, rational or irrational
numbers?

The methods considered in this paper provide a justifiable scale-invariant way to attack these
problems for subexpressions that are multivariate sums of monomials with real exponents.

1 Introduction
“Beauty is in the eye of the beholder.”

— Margaret Wolfe Hungerford

This article examines methods to make approximate answers produced by computer algebra
systems more comprehensible, or, in some sense, more “beautiful”. The analogy between these
methods and cosmetic surgery has some relevance, but we point out up front that the ‘beauty’ of a
result must not come at a significant cost to its correctness.

An example may make this clearer. For instance, regardless of the actual or needed accuracy,
with IEEE floating-point arithmetic you might obtain a result such as

s = 4.237900021× 104z8/3 − 8.796459430051423z2 + 0.1104518890123726

− 1.666671031× 104z−1. (1)

Ugh! For most purposes, most people would round the coefficients in some ad hoc way before
presenting this result to others. Supposing that we wish to use only 5-decimal digit accuracy, the
techniques of this paper change this to

Beautify (s, 5)→ 42379.z8/3 − 8.8z2 − 16667.z−1 , (2)
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which we hope you find, as we do, significantly more comprehensible as an expression describing
a function from C\0 to C. Yet, for most purposes, the formulas in (1) and in (2) are equivalent:
For example, the singularities are the same, and because the zeros of these expressions are well-
conditioned, the locations of the corresponding zeros of the two expressions differ by less than one
part in 105.

1.1 Goals
“The purpose of computing is insight, not numbers.”

— Richard W. Hamming

We look only at a small ‘sub-problem’ in dealing with symbolic-numeric expressions, namely how
to present approximate answers in an economical and comprehensible way. One of our techniques
might also be useful in preventing ‘roundoff-induced expression swell’, in which a term that is
supposed to be multiplied by a zero coefficient is mistakenly retained, with all the concomitant
extra work that such a mistake entails. In that case, our goal of making the final result as elegant
as possible might serve to aid efficiency, as well.

The major contribution of this article is a justifiable, scale-invariant, deterministic way to arti-
ficially underflow terms to 0, based only on a relative tolerance such as significantDigits. The term
0.11045 . . . in (1) was removed in this way. Another contribution is a justifiable way to round to
fewer digits coefficients in terms that always have correspondingly smaller magnitude than some
other term. The term −8.8z2 in (2) arose in this way.

To be more precise, given a generalized multivariate polynomial P (z) with n complex variables
z1, z2, . . . , zn, and a tolerance ε, typically expressed as

ε = εTOL =
1

2
· 10−significantDigits , (3)

our algorithm finds a ‘more beautiful’ expression PB(z) such that

|P (z)− PB(z)| ≤ ε‖P (z)‖ (4)

for all z ∈ Cn except possibly in the neighborhood of isolated singular points1, and where ‖P‖ is
a norm related to the coefficients of P . The generalized polynomials we consider here are sums of
monomials with real exponents, so z = 0 is a distinguished point, in several senses, including that
P may be singular or have a branch point there.

1.2 Floating-Point Issues
1.2.1 Machine Epsilon
‘Machine epsilon’ is the smallest positive floating-point number εm such that 1.0+εm doesn’t round
to 1.0 (see e.g. [9, p. 13]). Machine epsilon is approximately 2.2E-16 for the fast IEEE binary
double-precision floating-point hardware prevalent in most current computers. This corresponds to
about 16 significant decimal digits of precision. Although often only a few correct significant digits
of accuracy are needed or justified by the data, it is wise to use higher-precision floating point than
the relative error desired in results. When approximate arithmetic is needed or desired, 16-digit
precision is usually more than enough if good numerical algorithms are used.

1Generalized polynomials allow negative powers or fractional powers, and may therefore contain poles or branch
points.
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1.2.2 Cancellation and Ill-Conditioning
Because of catastrophic cancellation, the relative error of a sum could change by arbitrarily large
amounts for certain values of its variables, given bounded relative changes in the summands. This
is a reflection of the mathematical fact that addition is ill-conditioned: z1(1 + δ1) + z2(1 + δ2) may
differ from (z1 + z2) by an arbitrarily large amount relative to (z1 + z2), even if both δ1 and δ2 are
uniformly small. In other words, the relative condition number of addition is infinite. As a formula,
that statement can be expressed as

z1(1 + δ1) + z2(1 + δ2) = (z1 + z2) + δ , (5)

where |δ| = |z1δ1 + z2δ2| ≤ ‖z1, z2‖‖δ1, δ2‖∗ by the Hölder inequality; but, clearly, the ratio of |δ|
to (z1 + z2) can be arbitrarily large. No possible arithmetic scheme that deals with errors in the
inputs can alter this fact, which holds even if no rounding errors are made during the computation.

Although we can’t finitely bound the relative change in total value caused by rounding the
coefficients in a sum that can be 0, we can finitely bound its absolute change to be no more than
(say) εTOL times some norm of the term magnitudes obtained by substituting any allowable numeric
values for the variables in the sum.

1.2.3 Underflow and Gradual Underflow
A sufficiently small number, less than about 2−1070 in magnitude for IEEE double precision, under-
flows to 0 on conversion to the floating-point representation. Numbers slightly larger are represented
as denormalized numbers, without the full precision available to normalized numbers. For more
details on underflow in IEEE arithmetic, see [14] and [18].

In our symbolic-numeric context, we use the word ‘underflow’ to mean replacing a coefficient
of a term of P (z) by 0, whenever this can be justified. The process of trimming digits of other
coefficients has some analogy to gradual underflow and denormalized floating-point numbers. In
our context, however, the magnitude of a coefficient at which we allow underflow depends very
strongly on the term itself and on the terms in the rest of the expression, as well as the tolerance.

1.3 Symbolic-Numeric Computation
Approximate data can occur as input to computer algebra programs for several different reasons.
First, the CAS may be used directly on approximate data as a matter of convenience. Sometimes, on
the other hand, it may be a matter of necessity: There may be no way within memory limitations or
computing time limitations to compute certain intermediate results exactly. Finally, it may be that
the exact result, while computable, cannot be presented to the user in a comprehensible fashion,
and numerical approximation as a final step may be what the user desires most.

“Everything has its beauty, but not everyone can see it.”
—Confucius, circa 500 BCE.

Therefore, most computer algebra systems have control-variable modes and/or functions that
force most numbers to be floating point. (Rational exponents are an advisable exception: It is rarely
wise to degrade an expression such as z1/31 z22 to z0.3333...31 z2.02 .) The question then becomes, what
numerical representation of the answer should be used? We digress a bit and discuss some common
issues with floating-point: Sometimes it is necessary to use more than 16-digit precision to obtain
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a desired result accuracy. Most large computer-algebra systems also provide slower adjustable-
precision approximate arithmetic for this purpose. This allows users to set εm arbitrarily small,
limited only by patience and computer memory. Either way, default results often display more
significant digits than users need or want to see, making the result less comprehensible than it
could be. We refer to such a display as having ‘spurious precision’.

Moreover, the relative error of many result numbers displayed to the working precision is likely
to be substantially greater than 1 unit in the last displayed digit.

We need an easy way to round and artificially underflow floating-point numbers in symbolic
expressions to tolerances that we specify. This should not be ad hoc but rather systematic, repro-
ducible, and predictable.

1.3.1 Contagion
“Mirror, mirror on the wall, who is the fairest of them all?”

—The Wicked Witch
from ‘Snow White’, The Book of Household Tales, by The Brothers Grimm

Many computer algebra systems allow floating-point numbers in non-numeric expressions, with
floating-point numbers being locally infectious: If all of the arguments of a function or operator
are numeric constants and at least one argument is floating point, then the subexpression result is
floating point. For example,(

1.38 +
√
π ln2

)
z2 +

√
π ln(2)z +

2

3
→ 2.60857z2 +

√
π ln (2) z +

2

3
. (6)

We see that numbers in non-numeric results can be a mixture of floating-point, rational and irra-
tional numbers. However, in many systems numbers are combined as much as possible by coercing
non-float numbers to float if necessary. This is good because numeric subexpressions that contain
a float can be usefully replaced by a single float, whereas numeric subexpressions that contain no
float are left exact. Therefore approximate and exact numbers can peacefully coexist if they are
separated by a non-number2.

1.4 Statistical Considerations
We usually don’t know the actual errors in erroneous coefficients — otherwise we would correct for
them. However, the coefficients of two polynomial summands p and q might be experimental data
whose absolute error has known or estimated bounds or variances. Or, these coefficients might have
been computed approximately from such data or from exact numbers using interval arithmetic or
significance arithmetic respectively. In those cases too it is better for most purposes to underflow
a term if the bound or estimated standard deviation of the coefficient error isn’t usefully less than
the magnitude of the coefficient.

More specifically, consider adding two similar terms whose coefficients have absolute-error bounds
41 and 42 and corresponding uncorrelated absolute-error standard deviations σ1 and σ2. The re-
sult term coefficient has absolute-error bound 41 +42 and absolute-error standard deviation about

2Not all existing CAS implement such rules of contagion in the same way; for example, MapleTM leaves the
√
π ln 2

alone in this example. This is usually just irritating. On the other hand, the number 1.38 in this example is quite
short, shorter than the six-digit decimal in the result and therefore prettier, in some sense. Moreover, a maxim of
chess is that “a pawn advanced cannot be returned”, so perhaps there is some value in keeping the

√
π ln 2 intact,

absent an explicit user request. In the end, though, we regret this choice of the Maple designers.
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√
σ2
1 + σ2

2, depending on the probability distributions.3 We can then justifiably underflow that term
if this result bound or approximate standard deviation isn’t usefully less than the result coefficient
magnitude. For example, we can justifiably underflow the result term 4.237900021 × 104z8/3 of s
given by equation (1) if we believe that 41 +42 or

√
σ2
1 + σ2

2 is at least 4.237900021× 104. This
corresponds to a relative error bound or standard deviation of only about 1 part in 2×105 for either
of the two coefficients that summed to 4.237900021× 104.

1.5 Related Work
There have been rapid advances in recent years on methods for doing computer algebra with ap-
proximate coefficients. For examples, see [17, Sec. 2.12.3] and more recently [1, 13, 15, 34, 37]. At
the same time, classical work on approximation, such as the Hermite-Lindemann Transcendence
Theorem, has given rise to a substantial body of work on computability and complexity, such as [6],
[7], [20] and [28] to name only a few out of a multitude. Integer relations algorithms [8] and [21]
are proving increasingly important, especially in so-called ‘reverse symbolic computing’ [3].

We give pointers to several especially relevant bodies of work, below.

1.5.1 fnormal
The Maple function

fnormal(expression, significantDigits, underflowThreshold)

provides a convenient systematic way to cleanse an expression by rounding every floating-point
number in expression to the number of significant digits specified by significantDigits and underflowing
to 0 every floating-point number having magnitude less than underflowThreshold. For example, with
s as given in (1),

fnormal
(
s, 5, 10−99

)
→ 42379.z8/3 − 8.7965z2 + .11045− 16667.z−1. (7)

This is significantly more comprehensible.
The request for coefficients having 5 significant digits means that in exchange for approximating s

by a simpler expression we are willing to have terms in our result change by a relative amount of
up through about 1 part in 105 when any complex number is substituted for z.

However, this can be more dangerous than the algorithm of this paper, as the example below
shows:

fnormal(z500 − (1/2.0)500, 5, 10−99)→ z500 ,

whereas it is obvious that the simple roots on the half-unit circle of the first expression have all
been barbarously mashed to a multiple root at 0. This example is a classical one, used for instance
in [24] to show that nearby polynomials (in the 2-norm of the vector of coefficients) may not have
nearby roots.

Remark. —Scale Invariance
The underflowThreshold parameter is an absolute tolerance. Therefore it isn’t scale invariant: A
change of the independent variable z → µw and/or result scaling ŝ ← νs can change the set of
terms that would be underflowed using a particular absolute underflow threshold. In the above
fnormal example, changing z to w/2 makes the point clear. However, such scaling doesn’t change

3We can work with variances internally to avoid the expense of most square roots.
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the ratios of term magnitudes at corresponding values of z and w. Therefore such scaling doesn’t
change which set of terms is always relatively negligible. For example, it is better not to have a
mere change in units from centimeters to meters change the set of underflowed terms. The major
reason for floating-point arithmetic is to relieve users from such scaling concerns.4 Thus we set
underflowThreshold to 10−99 in computation (7), because this threshold must be positive and the
default is a dangerously large 102−Digits, where Digits is the current number of decimal digits in
floating-point significands.

An experienced user can choose a useful value for underflowThreshold after carefully inspect-
ing a result. However, such scale-dependent parameters are dangerous for amateurs and make it
cumbersome to automate robustly the use of fnormal from within another function.

1.5.2 identify
The Maple identify function [3] is an attempt to automatically ‘reverse engineer’ an approximate
number into an exact one. That is, given an approximation 3.14159, the routine returns a symbolic
π, and, more ambitiously for other inputs, tries to identify various integer linear combinations
of fundamental constants. In one sense, the exact answer is of course more beautiful! In our
code described in this paper we do implement optional rounding of floats to rationals, but for
identification of irrationals the user must call identify separately.

1.5.3 Sparse Interpolation
There have been quite a number of papers recently on sparse interpolation. The idea of this is, given
a vector of data points that one suspects arise from a sparse polynomial in the monomial basis (or
other basis), try to recover both the number of nonzero terms and the corresponding coefficients of
the interpolant (see e.g. [13]). One could try to beautify an expression by evaluating it at several
places and then using sparse interpolation techniques to recover only the needed terms.

1.5.4 Chebyshev economization
An old technique of numerical analysis (see e.g. [29]) is to replace a polynomial s(z) first by a
Chebyshev series

s(z) =
n∑
k=0

AkTk(z)

and then exploit the minimax property of the Chebyshev polynomials on [−1, 1] which ensures that
for smooth s(z) the higher coefficients Ak are usually small and so

s(z) ≈
K∑
k=0

AkTk(z)

which is of lower degree if K < n. For efficiency, one could even convert this approximation back
to the monomial basis if desired. In this construction, the beauty of an expression is simply the
negative of its degree in z. Note that Chebyshev polynomials are tied quite strongly to analysis on
an interval, whereas our work here is concerned with manipulations valid in the complex plane.

4When µ or ν is a power of the radix, floating-point is scale invariant within its minimum and maximum repre-
sentable normalized non-zero magnitudes, which are about 9.9× 10−293 and 1.8× 10308 for IEEE double precision.
Floating point is nearly scale invariant within these bounds even when µ or ν isn’t a power of the radix.
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1.5.5 Nearest Polynomial with a Given Zero
In [33] and in [27] we find polynomials being adjusted so as to be zero at given places (an extension
in [26] to weighted norms is also of interest). If the measure of ‘beauty’ is how well the polynomials
fit the given zero, then again the approach of that construction is similar to the approach of this
present paper.

1.5.6 Approximate GCD and Computer-Aided Analysis
By far the most substantial literature in symbolic-numeric computing with polynomials concerns
computing the GCD of approximate polynomials. Solving an optimization problem to find the
‘nearest pair of polynomials’ that have a nontrivial GCD is a fruitful approach in that field, and
various optimization strategies including linear programming have been used here. One could say
that in this construction, polynomial pairs are more ‘beautiful’ if they have higher degree GCD. We
do not tackle the GCD problem in this present paper, but merely note the similarity here.

1.5.7 Algorithm Stabilization by Zero-Detection
The algorithm of [32] uses an older approach due to Shirayanagi and Sweedler which attempts
something similar to the work of this present paper, but also claims that underflowing terms to zero
(making them more beautiful in our context), allows stabilization of algorithms, for example for
computing Gröbner bases. However, the utility of this approach for stabilization may be limited in
practice [19].

1.5.8 Empiric and Intrinsic Coefficients
Hans Stetter [34] made significant progress in numerical polynomial algebra by importing ideas from
analysis into computer algebra. He makes a clear distinction between coefficients that are empiric,
meaning arising from experiment and subject to error, and intrinsic, meaning exact. Intrinsic
coefficients would have unimprovable beauty, by themselves; only empiric coefficients are subject
to rounding or underflow, in his model. Our code allows underflow of exact coefficients as well, if
explicitly requested.

1.5.9 Significance Arithmetic
Significance arithmetic is an old idea, implemented in at least one computer algebra system, Math-
ematica®. In our context, trimming digits that do not contribute anything significant to the value
of the expression makes the expression more beautiful. For a discussion of significance arithmetic,
see [36]. In our context, we do not propagate errors and trim the results so as to display only
digits we are sure of, which is significance arithmetic, but rather post-process an expression to see if
certain terms can be trimmed further, or away altogether. Our techniques may be especially useful
in combination with significance arithmetic.

1.5.10 Interval Arithmetic, the Range of Functions, and Taylor Models
A mathematically guaranteed alternative to significance arithmetic is interval arithmetic. See for
example [2, 11, 30, 31]. Guaranteed bounds on propagated error are computed together with the
result. This has been used to compute tight bounds on the range of functions [25], which is a task
that we use here for generalized polynomials only, and because this is so simple we need not use
sophisticated tools to do it. A particular style of interval arithmetic, namely Taylor models [22], is of
interest for us for the following reason. A Taylor model of a function f(z) is a representation of f(z)
as a truncated Taylor polynomial, together with computed bounds on the remainder (inclusive of
rounding or other propagated error). One can easily imagine beautifying an expression and simply
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adding a bit to the error bound to guarantee enclosure (for computation one could even use the
original Taylor model). We do not pursue this further here, but note it as an interesting avenue to
explore.

1.6 Definitions and Notation
This measuring stick must enable them not only to distinguish

the good from the bad, but, more important,
the better from the merely good.

—Zahavi and Zahavi, “The Handicap Principle”, Oxford University Press 1997, p. 223

Definition. The ugliness of an expression is the number of non-zero terms plus the total number
of digits in the coefficients that aren’t leading or trailing zero digits or powers of 10 for scientific
notation5.

Definition. The beauty of an expression is the negative of its ugliness. The beauty of a vector or
matrix of expressions is the sum of the beauty-values of its entries.

Remark. Our mathematical-expression beauty is rated from −∞ through 0. Thus 0 is the most
beautiful expression, making perfect beauty its own reward.6

For example, the ugliness of 0.00123z4 + 456.7 is 2 + 3 + 4 = 9, making its beauty −9.
No single definition of ugliness and beauty is best for all purposes. Note in particular that

our definition does not pay any attention to pattern or to symmetry—surely our most significant
omission, which we hope to rectify in the future. This definition also has some similarity to the
definitions of entropy or Kolmogorov complexity. Again, we do not pursue this here.

Our goal is to maximize beauty only by rounding coefficients and artificially underflowing
terms in a scale-independent way, subject to the constraint that the absolute change in
the expression value for any allowable numeric values of the variables therein doesn’t
exceed a given positive ε times some specified norm of all the term magnitudes.

We are not concerned here with any other transformations such as factoring, common denominators,
trigonometric transformations, etc.

Remark. Many modern algorithms rely on correlated rounding errors for stability; for a famous ex-
ample, see [35]. Rounding of intermediate coefficients in a computation destroys those correlations,
and is therefore not recommended generally. Underflow of terms is a separate matter and we discuss
this in detail later.

As we saw above, the function fnormal rounds every coefficient to the same number of significant
digits. However, this is sub-optimal if a term t always has significantly smaller magnitude than some
other term for all allowable values of the variables therein. For example, if some term magnitude
is always at least 1000 times larger than the magnitude of a term t and the largest-magnitude
term is displayed to 5 significant digits, then it is reasonable to display the coefficient of t to only 2

5Leading zeros and trailing zeros are also sometimes spurious, and ugly.
6Also, no matter how ugly an expression is, it could be worse.
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significant digits. This balancing of the absolute rounding perturbations increases comprehensibility
without dramatically altering the absolute change in the value of the sum.

More specifically, if the magnitude of a term t is always at most r∗ ≤ 0.1 times the magnitude
of the largest term, whose identity might depend on z, then we can justifiably further increase
comprehensibility by rounding the coefficient of t to

d← significantDigits + dlog10 r
∗e (8)

significant digits, because rounding the largest-magnitude term to significantDigits can incur that
much absolute change.

When d ≤ 0 this has the further benefit of justifying automatic underflow of the term
to 0 in a scale-independent way,

because then the magnitude of t is always less than the allowed magnitude change incurred by round-
ing some other term. This is good because underflowing a term to 0 increases comprehensibility
even more than rounding its coefficient to a shorter non-zero number.

This article explains how to determine the pessimal7 r∗ for each term and how we can thus
justifiably round and artificially underflow terms as much as possible, consistent with one specified
scale-invariant relative tolerance such as significantDigits.

We have implemented this in Maple as a function named Beautify. For s given by equation (1),

Beautify (s, 5)→ 42379.z8/3 − 8.8z2 − 16667.z−1 . (9)

In comparison to the result of fnormal in computation (7), the second coefficient displays only two
significant digits, and the term 0.11045 · · · z is artificially underflowed. The coefficient 0.11045 . . .
might seem too large to justifiably underflow, but depending on z, either the leading or trailing
term always has magnitude at least 105 times larger.

Remark. One wonders what the beautification process does to the location of the zeros of the object.
In general this depends on the conditioning of the zeros, of course. For the example (1) and its
beautified expression (2), the zeros change in position by no more than 5× 10−6.

By default, the Beautify function doesn’t change any rational numbers or exact irrational num-
bers such as π +

√
2 that occur in the given expression. However, if there is also an approximate

number in the expression, then those exact constants would (in most systems other than Maple)
infectiously be converted to floating-point constants when numbers are substituted for all of the
variables. In Maple an explicit transformation (for example by using evalf) has to be used for
this purpose. The relative-error bounds of the resulting constants are often about εm. Therefore
the magnitudes of all constants are used to decide the rounding level or underflowability of terms
containing a floating-point number.

Furthermore, it is sometimes desirable to approximate exact numbers in an expression by round-
ing them to simpler rational or floating-point numbers and by underflowing exact terms that are
always negligible after substituting numeric values for all of the variables. Users can enforce this
behaviour by coercing all inputs to floating-point before Beautify is called.

7The pessimal r∗ is the r at which the worst behaviour occurs. One could also call such an r∗ the pessimum.
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On the other hand, if given the keyword output=Rational as an optional argument, then Beautify
instead rounds floats in its output to the “simplest” nearby rational numbers using significantDigits:

Beautify (s, 5, output=Rational)→ 42379z8/3 − 35

4
z2 − 40000

3
z−1 .

Conversion to rational from float is done by the Maple built-in command convert with the
rational option. This uses continued fractions in the usual way (see e.g. [12, Section 4.6]). While
beautiful and practical, this tool can produce surprising results: For example, conversion of 2−49 =
1/562949953421312 to floats at 10 decimal digits and then back to rational (at the same precision)
does not recover 2−49, but rather something close, 1/562949953548156. On reflection, this is not so
surprising—the denominator we started with was too big to recover at this precision—but somehow
the nearby 2−n is really wanted, as the simplest, most beautiful nearby fraction, having as it does
only one tiny factor. This, of course, is the tip of the Kolmogorov complexity iceberg.

It is possible that Beautify recovers an exact result. The likelihood of this decreases if the
significantDigits argument is much larger than justified by the actual errors in the numbers in the
expression, because then the algorithm won’t allow the numbers to change as much as is needed.
The likelihood of recovering an exact result also decreases if the significantDigits argument is much
smaller than justified by the actual errors in the numbers in the expression, because then the
algorithm allows the numbers to change too much in search of simple fractions.

For each coefficient the most likely value of significantDigits for recovering its exact value is about
the expected standard deviation of the error in that coefficient. Without significance arithmetic,
users often won’t have a good estimate for these standard deviations. However, they do often have
a good idea of what accuracy they need, so they can at least round and underflow that much.
Moreover, they can try a sequence of values such as significantDigits = 2, 3, . . . to determine which
is most satisfying. Also, if there is an easy way to verify a measure of the maximum error, they can
try that for the result of each alternative.

Because of mixing in a sequence of operations, it seems likely that the standard deviations
of the absolute coefficient errors in a sum of terms are more nearly the same than the standard
deviations of the relative coefficient errors. Thus our scheme of rounding coefficients of relatively
small-magnitude terms to fewer significant digits also increases the chances of recovering more
exact coefficients. However, the likelihood of recovering an exact result decreases dramatically as
the number of approximate numbers in the expression increases. Therefore when users believe
that only certain of the rounded numbers have been recovered, they can substitute those into
the given expression as rational or irrational constants, then try again with a different value for
significantDigits.

Although exact results aren’t recovered most of the time, beautified results are usually more
comprehensible to the extent justified by the requested significantDigits and the numeric result type.
Also, automatic error analysis might be able to verify that the beautified solution is at worst as
accurate as you could expect for those data values, their error bounds or standard deviations, and
the working precision that was used.

Because of the extra information, we often can be significantly more aggressive in simplifying
the sum of two simplified expressions that contain one or more similar terms. Section 2 explains
how this can be done for generalized polynomials.
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2 Beautifying sums of generalized polynomials
Our justification for rounding and artificially underflowing coefficients in a sum is based on the
worst possible change it could make in the resulting numeric value over all sets of allowable numeric
substitution values for all of the indeterminate variables in the sum. The net rounding error incurred
when adding the resulting numeric terms during such a substitution is not the concern of this article,
because we are willingly making larger perturbations in exchange for beautification.8

For algorithms such as polynomial division, polynomial gcds via remainder sequences, and Gröb-
ner basis computation, it is important to artificially underflow to 0 polynomial coefficients that
would have been 0 with exact computation. However, Beautify alone can never round all of the
term coefficients to fewer than significantDigits or artificially underflow all of the terms of a result,
because not all of the terms can always have magnitude less than the magnitude of some other
term.

However, we can justifiably artificially underflow all of the terms of a sum result in a scale-
independent way if the sum was the result of adding two other known expressions for which we have
bounds or estimates of the standard deviations of the coefficient errors: For example, suppose that
we know not only s given by equation (1), but also that it was formed by

s← p+ q (10)

where

p = 9.876543210238365× 109z8/3 − 8.796459430051423z2

+ 1.234569556796504× 109z−1, (11)

q = −9.876538972338344× 109z8/3 + 0.1104518890123726

− 1.234567890125473× 109z−1. (12)

We have underlined the differing digits in similar terms. Suppose also that the leading coefficient
of p has an actual absolute error of about −8 × 104 and the leading coefficient of q has an actual
absolute error of about 0.9 × 104. Then the corresponding result coefficient 4.2379000021 × 104

has an absolute error of about −8.9 × 104, which has a larger magnitude than the resulting term
coefficient—and the opposite sign. Such utterly-incorrect terms can ruin an entire calculation if
they are subsequently involved in a pivotal role, such as becoming the lead term during a Gröbner
basis or a polynomial gcd calculation or becoming the lead term of a matrix element selected for
pivoting. Moreover, even low-accuracy pivotal terms tends to make many or most numbers in the
result also have low accuracy. In contrast, the damage is usually more localized and less severe if
the utterly-incorrect or low accuracy term is artificially underflowed. Thus for many purposes it is
better to delete a term if its coefficient is completely incorrect or perhaps even if it has very low
accuracy.

8When numeric values are substituted for all of the variables in a sum, most computer-algebra systems simply
add resulting numeric terms either left-to-right or right-to-left. Higham [16] discusses more complicated methods
for summing n numeric terms more accurately. However, if you are willing to accept the routine addition that you
obtain without beautification, then you should be even more willing to accept it after beautification.
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Also, many computer-algebra algorithms rely on recognizing when an expression such as a
polynomial remainder or a reduced S-polynomial is 0. With approximate arithmetic that involves
numeric division or a non-trivial number of operations, an expression that would have been 0 with
exact arithmetic is very unlikely to be 0.0 with approximate arithmetic unless we aggressively
artificially underflow terms in a justifiable way: The likelihood of every coefficient being 0.0 is
significantly less than only the coefficient of one term that would otherwise become pivotal. Thus
when we are trying to recognize when all of the terms of a remainder are 0.0, it is better to be
somewhat aggressive in artificial underflow than too timid.

Even similar large-magnitude terms in p and q that completely cancel in the sum s are helpful
for justifying underflow or more rounding in other result terms. For example, in processes such
as polynomial division or the formation and reduction of S-polynomials it is common to omit the
leading terms of p and q for efficiency, because we know that they completely cancel. For example,
suppose we want a linear combination of polynomials

p = 2.345678901 · 108 ∗ z2 + 3.456789012 · 108

q = 4.567890123 · 108 ∗ z2 − 0.1234567890 · z + 6.731625709 · 108

that annihilates the leading term. Cross multiplying by the leading coefficients then subtracting,
we obtain, using ten decimal digit arithmetic,

P −Q = 4.567890123 · 108p− 2.345678901 · 108q

=
(
1.071480348 · 1017z2 + 1.579023239 · 1017

)
−
(
1.071480348 · 1017z2 − 2.895899851 · 107z + 1.579023240 · 1017

)
= 2.895899851 · 107z − 1.1 · 108 . (13)

The magnitude of the result’s constant coefficient isn’t small compared to the magnitude of any
coefficient of p or q. However, it is small compared to the corresponding coefficients in the two
addends. Beautifying this result will not underflow either resulting term even for significantDigits
as small as 1. However, −1.1 · 108 is the result of catastrophic cancellation when subtracting
1.579023240·1017 from 1.579023239·1017. The ratio of 1.579023239·1017 to 1.1·108 is approximately
1.6 · 109. Therefore we can justifiably underflow −1.1 · 108 for any value of significantDigits < 9.

The linear term of the result is not involved in any cancellation, but it can still be underflowed:
For |z| ≥ 1.2, the quadratic term that was elided from the two addends is at least 4 · 109 times
greater than the linear term, and for |z| ≤ 1.2, the constant term is at least 4 · 109 times greater.
Thus if we want to use artificial underflow most effectively in a process such as polynomial division
or Gröbner-basis computation, then we should explicitly or implicitly include the leading terms that
we know will cancel.

Traditional floating-point versions of such algorithms would probably use monic normalization so
that the leading coefficients are exactly 1.0. However, that 1.0 is obtained by dividing a polynomial
by its probably-inexact leading coefficient. Moreover, all coefficient magnitudes are relevant even
when exact, because they become floating-point numbers if we later substitute a floating-point value
for z.

For these reasons we have also written a function

AddThenBeautify (expression1, expression2, significantDigits,<options>)

12
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that beautifies the sum of expression1 and expression2.9
The extra information of the two addend expressions enables this function justifiably to be

more aggressive than Beautify in rounding more terms to fewer significant digits and underflowing
more or all terms when expression1 and expression2 contain similar terms having oppositely-signed
coefficients. For example, all of the result terms of p + q given by formulas (11) and (12) are
underflowed to 00 for significantDigits < 9.

Definition. A generalized univariate polynomial in z is 0, or else a term of the form bzβ with
complex b 6= 0 and complex indeterminate z and real β, or else a sum of two or more such non-zero
terms.

Definition. An end term of a generalized univariate polynomial is the term with the largest or
smallest exponent.

Definition. An intermediate term of a generalized univariate polynomial is any term except an
end term.

Definition. A term is an underflow candidate if it is approximate or if the user has specified that
exact objects may also be underflowed.

Definition. A term is a rounding candidate if it is approximate or if the user has specified that
exact objects may also be rounded.

For a non-zero floating-point number it is almost always prudent to assume that its relative-error
bound is at least machine epsilon. It is also reasonable to assume that the actual absolute errors
are uniformly distributed for such a small relative interval, giving a corresponding relative standard
deviation of at least 2.2× 10−16/

√
3 ≈ 1.3× 10−16 for IEEE double precision.

A numeric term whose magnitude is always less than about machine epsilon times that of
another numeric term won’t affect the sum when those two terms are added together. Therefore,
it is almost always justifiable to delete such a relatively-small-magnitude term. Thus even having
significantDigits be the full working precision can justifiably result in some rounding and perhaps
also artificial underflow. For example, the coefficient of z2 is rounded from 16 to 8 significant digits
in

AddThenBeautify (p, q, 16)→ 4.237900021× 104z8/3 − 8.7964594z2 + 0.110452

− 1.666671031× 104z−1

because either the leading term magnitude or the trailing term magnitude of p or q is always at
least 108 times as large. For similar reasons the constant term is rounded to 6 significant digits.
The end terms of the sum s can justifiably be rounded to 10 significant digits, but their 6 trailing
digits were already zeros because of catastrophic cancellation.

In a sequence of operations, AddThenBeautify can be used at each addition of two simplified
expressions. When doing so, the value of significantDigits for each invocation can be guided by
interval arithmetic, significance arithmetic or some other error estimate. Typically, appropriate

9The Beautify function is implemented as AddThenBeautify(expression1, 0, . . .).
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values for significantDigits decrease monotonically as the sequence of operations proceeds, eventually
reaching 0, which indicates that higher precision arithmetic is advisable (and that the computation
needs to be re-done).

Rounding can save data space during intermediate calculations with adjustable-precision floating
point, but rounding intermediate coefficients can be dangerous. When there is sufficient data space,
for all but the final result it is best to limit the action of AddThenBeautify to artificial underflow
because rounding to non-zeros is then merely for aesthetics or for displaying only significant digits
that are thought likely to be correct. For fixed-precision non-decimal floating point such as IEEE,
it might be necessary to do such rounding beautification during output radix conversion to avoid
result numbers such as 4.699999999999999.10 For these reasons Beautify and AddThenBeautify have
the optional keyword arguments underflow which defaults to true and round (which again defaults
to true) to control this behaviour.

When used in round=false mode for internal computations, beautification can help stabilize algo-
rithms that otherwise tend to be unreliable with approximate arithmetic. However, Khungurn [19]
shows that there can be limits to how much can be accomplished this way.

2.1 Overview of the algorithm
Here is an overview of how AddThenBeautify works:

For each term of the unbeautified simplified sum we determine the smallest possible
ratio of its magnitude to that of any other term in either input expression or their sum.
Then, using that pessimal ratio and a norm of the term magnitudes we underflow or
round the terms of the sum accordingly.

2.1.1 Computing pessimal term ratios with linear programming
Suppose we are to add two generalized polynomials p and q, giving an unbeautified sum s. Jointly
number all terms in p, q, and s, so that the kth term is tk(z) = bkz

βk,1
1 z

βk,2
2 . . . z

βk,m
m = bkz

βk ; let us
say there are n terms in total. Write r∗k for the pessimal ratio for term k; then for each term tk of
s, we need to solve the following optimization problem:

Problem 1. Find the minimal rk ∈ R such that for all z ∈ Cm, there exists 1 ≤ j ≤ n such that

|tk(z)| ≤ rk |tj(z)| . (14)

This turns into a linear inequality if we take common logarithms on the left and right hand
sides, and write

B` for log10 |b`| ,
R` for log10 |r`| ,
Z` for log10 |z`| ,
Z for (Z1, . . . , Zm).

(We use the common logarithm because that leads to a useful interpretation in terms of number of
significant decimal digits.) This yields the following optimization problem:

10The default Maple floating-point arithmetic is decimal.
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Algorithm 1 Multivariate algorithm
Require: B is an array of length n
Require: β is an n×m array
Ensure: R1,...,k is an array with the following property: For all positive integers k ≤ n and all
Z ∈ Rm, there exists a positive integer j ≤ n such that Bj +

∑m
`=1 βj,`Z` ≥ Rk+Bk+

∑m
`=1 βk,`Z`.

v ← the (m+ 1)-element unit array 〈1, 0, . . . , 0〉
A← an n× (m+ 1) array
A...,1 ← the n-element all-one array
for k ← 1 to n do
for `← 1 to m do
A...,`+1 ← β...,` − βk,`A...,1

end for
w ← BkA...,1 −B
Rk ← the maximal value of v · z subject to A · z ≤ w for z ∈ Rm+1

end for

Problem 2. Find the minimal Rk such that for all Z ∈ Rm, there exists 1 ≤ j ≤ n such that

Rk ≥ Bk −Bj +
m∑
`=1

(βk,` − βj,`)Z` =: fj(Z). (15)

Let R∗k be the solution of this problem. Clearly minj fj(Z) is a lower bound for R∗k for every Z;
if (Rk,Z) are such that Rk is less than each fj(Z), then Rk is also a lower bound for R∗K . Since we
are optimizing over a finite number of choices for j and since fj(Z) is linear in Z, we know that
inequality (15) attains equality for at least one pair (j,Z). The minimal value for Rk for that value
of Z is thus equal to R∗k. This means that we can reformulate the problem again.

Problem 3. Maximize Rk subject to

Rk +
m∑
`=1

(βj,` − βk,`)Z` ≤ Bk −Bj for all j = 1, . . . , n.

This is a standard linear programming problem, with Rk and all Z` as variables. This program
always has a feasible point: For every value of Z1, . . . , Zm we can take Rk small enough to make
all inequalities hold. The solution is always bounded because of the constraint with j = k, which
states that Rk ≤ 0. Our algorithm for finding the pessimal term ratio is simply solving this linear
programming problem for every term tk of s, as in Algorithm 1; the pessimal term ratio for tk is
then 10R

∗
k . Once we know all term ratios, we can select one of the methods proposed in Section 2.5

to perform the actual beautification.

2.2 Refinements of the algorithm
2.2.1 Terms with equal degrees
We can obtain a simple algorithmic optimization by the following observation. Suppose that for
some multi-degree β, both p and q have a nonzero term – say tp = bpz

β and tq = bqz
β, respectively.

15



Rounding coefficients and artificially underflowing terms in non-numeric expressions TBA

Let ts = tp + tq = (bp + bq)z
β. Out of these two or three nonzero terms, we need only consider as

numerator in the pessimal term ratio a term where the coefficient is maximal in an absolute sense.
This can be found in a preprocessing pass. In such a pass, we can also examine the constant term
ratio |ts|

max(|tp|,|tq |) = |bp+bq |
max(|bp|,|bq |) ; if this is small enough to underflow ts, then the linear programming

problem for this particular term does not need to be performed.

2.2.2 Dualizing the problem
The variables in Problem 3 are all unrestricted in sign, and the constraints are inequality constraints.
Many linear programming algorithms use only non-negative decision variables and equality con-
straints internally11; typically, an unrestricted variable Z is rewritten as the difference between two
nonnegative variables Z+−Z−, and an inequality f(Z) ≤ B is rewritten as an equality f(Z)+Z∗ = B
involving a nonnegative slack variable Z∗. Both of these transformations introduce extra variables.
If one uses such a linear programming algorithm, an attractive alternative to the primal problem
given above is the following dual problem:

Minimize
m∑
j=1

(Bk −Bj)dj subject to

d1, . . . , dm ≥ 0,
n∑
j=1

dj = 1,

n∑
j=1

(βj,` − βk,`)dj = 0 for ` = 1, . . . ,m,

which has only equality constraints and positive decision variables.
If we solve the linear programming problem for all of the n terms in an expression, then the

total computing time is almost always Θ (mn3) for the primal formulation, versus Θ (m2n2) for
the dual formulation. Most large expressions have more terms than variables, often dramatically
more because operations such as polynomial expansion, remainder sequences and Gröbner basis
computations often dramatically increase the number of terms without increasing the number of
variables. For such expressions, the dual formulation is substantially more attractive.

2.2.3 Using other known inequalities
Suppose we know that an inequality reducible to the form

|z1|e1 · · · |zm|em ≤ c

holds, for some c ∈ R+ and ei ∈ R. For example, if z1 represents the sine of a (real) angle, then we
have |z1| ≤ 1. (We expect that cases such as this, where ei = 0 for all but one value of i, are the
most common.) If we take (common) logarithms and write C for log10 c, then we obtain

e1Z1 + · · ·+ emZm ≤ C, (16)
11We use the built-in Maple command LPSolve from the Optimization package, which uses an iterative active-set

method implemented in a built-in library provided by the Numerical Algorithms Group (NAG): Specifically, the
routine E04MFF from the NAG library [23]. Its algorithm uses inequalities directly and can handle both restricted
and unrestricted decision variables.
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which we can simply add to the formulation of Problem 3. For the dual formulation, adding such
an inequality corresponds to adding a variable.

One can just as easily add multiple such inequalities to the problem. Note that adding these
inequalities can only make the original problem infeasible if they contradict each other: If there are
points Z that satisfy inequalities (16), then a sufficiently small value of Rk makes all inequalities in
Problem 3 hold.

2.2.4 Early termination conditions
In the primal formulation of the program, we can choose to remove the constraint for j = k (which
states that Rk ≤ 0): If it makes a difference for the maximal value of Rk, then that is the difference
between a positive value and 0. Neither of those cases leads to rounding, nor to underflowing.
However, omitting the constraint leads to unbounded solutions for terms tk that are end terms.
Similarly, we can optionally add a constraint stating that Rk ≥ −significantDigits, as an early
termination condition, if we are willing to relinquish the guarantee of a feasible point: If there is
no feasible point after adding that condition, then the original problem only had solutions with
Rk < −significantDigits and thus tk can be underflowed justifiably; the same reasoning holds if
conditions as in inequality (16) have been added to the problem.

As in the previous section, these two choices correspond to adding or removing a variable from
the dual formulation.

2.2.5 Univariate polynomials
For the univariate case, there is a faster algorithm for determining the pessimal term ratios that we
present in Section 2.4.

2.3 Example
Consider the bi-variate example

s = t1 + t2 + t3 + t4 + t5 (17)

where

t1 = 2345.678901 z
5/2
1 z

5/2
2 ,

t2 = 56789.01234 z21 ,

t3 = 3.456789012 z2,

t4 = 90123.45678 z−11 z22 ,

t5 = 45678.90123 z1z
−1
2 .

Figure 1 shows a diagram of the exponent pairs of t1 through t5, with the exponents of z1 along
the horizontal axis and the exponents of z2 along the vertical axis. Each point is labeled with the
term subscript. The diameters of the circles are proportional to the logarithms of the coefficient
magnitudes.

For a term t where the corresponding point is on a corner of the Newton polytope, terms of
different degrees cannot contribute to underflowing or rounding: There is a direction in (Z1, . . . , Zm)-
space such that when moving in that direction, log10 |t|, and thus |t|, grows strictly more quickly
than any other term. (Of course, if such a term is the result of cancellation, it may still be subject
to underflowing or rounding, and we can always round each coefficient to significantDigits digits.)
Hence, we can see from Figure 1 that t3 is the only term that could be underflowed by our algorithm.

The linear program given by Problem 3 for k = 3 is as follows:

17
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Figure 1: The terms of s.

Maximize R3 subject to

R3 +
5

2
Z1 +

3

2
Z2 ≤ −2.832,

R3 + 2Z1 − Z2 ≤ −4.216, (18)
R3 − Z1 + Z2 ≤ −4.416,

R3 + Z1 − 2Z2 ≤ −4.121.

This linear program is visualized in (Z1, Z2, R3)-space in Figure 2.

Figure 2: The linear program given by Equations (18).
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The corresponding dual linear program is as follows.

Minimize −2.832d1 − 4.216d2 − 4.416d3 − 4.121d4 subject to

d1, d2, d3, d4 ≥ 0,

d1 + d2 + d3 + d4 = 1,

2.5d1 + 2d2 − d3 + d4 = 0,

1.5d1 − d2 + d3 − 2d4 = 0.

The solution for both the primal and the dual program is −4.317, so term t3 can be underflowed
justifiably if significantDigits <= 4, or rounded to significantDigits− 4 digits otherwise.

2.4 The univariate case
As in the general (multivariate) case, consider a nonzero term bkz

βk of s. In order to find the
pessimal term ratio, we need to solve Problem 2.

Let us define µ as the maximum of the linear functions Bj + βjZ corresponding to the terms;
that is, for each real Z, we define µ(Z) as maxj Bj + βjZ. Solving Problem 2 means finding the
maximal value of Bk + βkZ − µ(Z); according to the following proposition, this is a continuous,
concave down, piecewise linear function.

Proposition 1. The maximum of a finite, positive number of linear functions is a continuous,
concave up, piecewise linear function.

Proof. By induction on the number of linear functions.

Consider the subsequent “pieces” or segments of the function Bk + βkZ − µ(Z). Subsequent
segments (ordered by increasing Z-values) of such a function have ever smaller derivatives; if there
is a maximum, then it is at a point (or segment) separating the segments with negative and positive
derivatives. This is at the point (or segment) separating the segments of µ(Z) with derivative
smaller than β from those with derivative greater than β.

This suggests computing the pessimal term ratios in two passes:

• Iterate over the degrees occurring in p, q, and s, constructing a representation of µ(Z). This
pass is detailed in Algorithm 2.

• Then iterate over the terms of s and determine Rk from µ(Z). This pass is detailed in
Algorithm 3.

As a preprocessing step, we merge the lists of terms of p and q, sorted by degree, and create
three arrays, B, β, and Γ. The kth entry of each of these three arrays relates to the kth term in the
merged list; βk is the degree of the kth term, and Bk = log10 |bk|. If only one of the two summands
has a term of a given degree, then Γk = Bk. If both have a term of that degree, then Γk is the
logarithm of the maximal absolute coefficient among the corresponding terms in p, q, and s. If the
terms of p and q are already sorted by degree, then this step can be done in Θ(n) operations.

Proposition 2. Algorithm 2 satisfies its specifications.
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Algorithm 2 First pass of the univariate algorithm
Require: B and β are arrays of equal, positive length n
Require: β is sorted in increasing order
Ensure: M1,...,L is an array of positive integers i such that the subsequent segments of the piecewise
linear function max1≤j≤n(Bj + βjZ) are given by the expressions Bi + βiZ

M ← n-element array
M1 ← 1
`← 1
for i← 2 to n do

while
BM`−1

−BM`

βM`
− βM`−1

≥ BM`
−Bi

βi − βM`

do

`← `− 1
end while
L← `+ 1
ML ← i

end for

Proof. We show that the following predicate is an invariant of the outer loop:

(P) M1,...,` is an array of positive integers n such that the subsequent segments of the piecewise
linear function max1≤j≤i(Bj + βjZ) are given by the expressions Bn + βnZ.

This is clearly true when entering the loop (thus with i = 1), since the maximum of one expression
is that expression itself.

In order to show that (P) is an invariant, we need to prove (P) when i is increased. That is,
the expression Bi + βiZ is newly included in the maximum. Since β is sorted in increasing order,
βi is greater than any of the βj already being considered for this maximum. Thus for sufficiently
large Z, this new branch is the maximum, and for sufficiently small Z, a different branch is the
maximum. We only need to establish where the boundary between these two regions is.

In order to find that, we check the point of intersection between Bi + βiZ and BMj
+ βMj

Z,
given by

Z =
BMj

−Bi

βi − βMj

,

which value we define as Ẑ, and compare it to the point of intersection between BMj
+ βMj

Z and
BMj−1

+ βMj−1
Z, the Z-value of which we call Z̃. If Ẑ ≤ Z̃, then the region where BMj

+ βMj
Z ≤

Bi + βiZ overlaps with the region where BMj
+ βMj

Z ≤ BMj−1
+ βMj−1

Z, and thus the segment
BMj

+βMj
Z does not occur in the maximum. Otherwise, the regions do not overlap and the segment

does still occur. The inner loop decreases ` until M` is an index of a segment that still occurs in
the maximum. Afterwards, i is added to the end of M1,...,`. This proves that (P) is an invariant
and thus proves the proposition.

Proposition 3. Algorithm 2 requires Θ(n) steps.
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Algorithm 3 Second pass of the univariate algorithm
Require: B and Γ and β are arrays of equal, positive length n
Require: β is sorted in increasing order
Require: M1,...,L is an array of positive integers i such that the subsequent segments of the piecewise
linear function max1≤j≤n(Bj + βjZ) are given by the expressions Bi + βiZ

Ensure: R1,...,n is an array with the following property: For all positive integers k ≤ n and all
Z ∈ R, there exists a positive integer j ≤ n such that Bj + βjZ ≥ Rk + Γk + βkZ

for i← 1 to L− 1 do

Z ←
BMi+1

−BMi

βMi
− βMi+1

for k ←Mi to Mi+1 − 1 do
Rk ← BMi

− Γk + (βMi
− βk)Z

end for
end for
Rn ← Bn − Γn

Proof. Any one particular iteration of the outer loop can require Θ(n) steps, so we need to use
an amortized complexity analysis. We propose a credit-based approach [5]. We charge two extra
operations whenever ` is increased; this credit is released when ` is decreased, paying for the decrease
operation and the subsequent comparison in the inner loop. Thus the amortized cost of running
the full inner loop once is constant. Hence a single iteration of the outer loop is amortized constant
cost.

Proposition 4. Algorithm 3 satisfies its specifications.

Proof. In Proposition 1, we established that µ(Z) is concave up. Thus Γk − βkZ − µ(Z) is concave
down for every k. Hence its maximum occurs at

1. either the point separating the positive and negative derivative segments,

2. or in a degenerate case it is achieved on a segment where the derivative is zero.

In the first case, that point is the intersection of the segments BMi
+ βiZ and BMi+1

+ βi+1Z, such
that Mi < k < Mi+1. This point of intersection is at

Z =
BMi+1

−BMi

βMi
− βMi+1

.

In the second case, k itself occurs in M , as Mi, say. We can just set Rk = Bk − Γk in that case;
which is indeed what happens for Mi = k.

Finally, the value k = n does not occur in the main loop, so we need to set it separately. Since
this entry corresponds to the largest value of β, it certainly occurs in M and we can directly set
Rn = Bn − Γn.

Proposition 5. Algorithm 3 requires Θ(n) steps.

Proof. In the inner loop, every value of k from 1 to n− 1 occurs once.
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2.5 Using some particular norms for underflow and rounding
2.5.1 The 1-norm
After we have computed each R∗, the simplest way to round and/or underflow is to independently
do so for each term according to its R∗. If we do that, this process could be interleaved with the
computation of the R∗ so that we wouldn’t have to save n values of R∗. However, at least for some
numeric values of z, this process could result in an absolute change in the absolute value of the
sum of more than ε times the largest term magnitude in the inputs and their sum at those values
of z. As an unlikely extreme, all of the coefficients of one input could have identical values b, the
other input could have entirely similar terms but with identical coefficient values −(1 + ε)b. Then
every term artificially underflows to 0, causing an absolute change of ±nεb for z = 1, where n is
the number of terms in either input. Thus in a rare worst-case this term-underflow strategy more
nearly corresponds to allowing an absolute change in the sum of up through ε times the 1-norm of
the term magnitudes rather than ε times the magnitude of ∞ norm, which is the magnitude of the
largest-magnitude term. This term-rounding strategy is also based on the 1 norm, because unlike
the fnormal function, it allows each rounding to contribute an absolute perturbation of the sum by
ε times the magnitude of the largest term, which could be as large as nεb.

This option is essentially what we have implemented in our code.

2.5.2 The ∞-norm
Using the infinity norm might be more consistent with the rigorous bounds of interval arithmetic.
This could be done by the following greedy algorithm:

1. Rather than interleave the underflowing and rounding with computation of the R∗ values,
we store them. Also, for each intersection between two adjacent segments of µ(Z), define
T ∗ = Bj +βjZ = Bk +βkẐ at Z = Ẑ. Let T be the maximum of the T ∗-values corresponding
to the first and last such intersections. Since µ(Z) is concave up, this is the maximal value of
T ∗ overall.

2. Compute an allowance A = εT ∗.

3. We then sort the terms of s into non-decreasing order of their R∗ values, with ties broken in
some canonical way.

4. In non-decreasing order of R∗, for successive terms t of s that are underflow candidates:

(a) Compute the term underflow debit D ← | t|
∣∣
z=10Ẑ

.

(b) If D ≤ A, underflow the term then decrement A by D.
Else exit this loop.

(c) If A = 0 or no candidate terms remain, then exit this algorithm.

5. Let η be the number of remaining non-zero terms in s that are rounding candidates.

6. Continuing in non-decreasing orderR∗, for successive terms t of s that are rounding candidates:

(a) Compute the allowance per remaining term, Â ← A/η.
(b) Round the coefficient b of term t = bzβ to b̃ using an absolute tolerance Â.
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(c) Compute the term rounding debit D ←
∣∣∣b− b̃∣∣∣ zβ ∣∣∣

z=10Ẑ
.

(d) Decrement A by D, and decrement η by 1.
(e) If no candidate terms remain, then exit the algorithm.

Our code does not use this method.

3 Assumptions and Domains
Assumptions on variables are supported (in both the multivariate and the univariate case). They
are to be specified as a list of inequalities (which are understood as their conjunction), e.g.:

Beautify(10.× x− 0.01 + 10./x, 3))→ 10.x+ 10./x

Beautify(10.× x− 0.01 + 10./x, 7, [x > 4000])→ 10. ∗ x− 0.01

Beautify(10.× x− 0.01 + 1.0× x× y, 3, [x× y2 > 10, abs(x× y) < 1.0E − 4])→ −0.01 + 1.0× x× y

The assumptions supported are inequalities where left- and right-hand sides are products of
real numbers and (powers of) (absolute values of) variables, where both clauses in parentheses
are (independently) optional. In the balance between correctness and user-friendliness, we have
made one concession towards user-friendliness: We are really only interested in inequalities that
involve |x| (more precisely, linear inequalities in log(|x|), whereas a typical user wanting to state
that |x| < 0.001 (say) might be more likely to type x < 0.001 instead, which—when interpreted
literally—does not help us at all, since |x| can grow unbounded for x < 0. We decided to allow the
latter inequality to mean the former.

Strict constraints are interpreted the same as non-strict ones.

4 Other kinds of expressions
The Maple fnormal function works on general expressions, mapping down into an expression to
round and underflow floating-point numbers wherever and however they occur. So do the Beautify
and AddThenBeautify functions.

Our code applies the beautification to all subexpression of generalized polynomial type, freez-
ing their non-generalized-polynomial subexpressions into variables. More in particular: For every
subexpression of type + (that is, every sum in the DAG), it finds the subexpressions that are not
sums, products, or exponentiations (where the exponent is a rational or the base is just a variable),
replaces those subexpressions by fresh variable names (but the same name for identical subexpres-
sions), and applies our code to the resulting expression, then performs the opposite substitution.
This process starts at the smallest (in terms of length) subexpressions of type + and works its way
along the list of such subexpressions.

However, the justifiability of underflow and rounding is undeveloped in the current versions for
expression that are not generalized polynomials.

Therefore whenever Beautify or AddThenBeautify encounters an expression that isn’t of the form
we have already discussed, it simply maps down into the expression until it reaches:
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1. A subexpression that is a generalized multinomial consisting of more than one term, to which
it applies our algorithms, or

2. An approximate number, which is simply rounded using the relative tolerance associated with
significantDigits. Note that this alone does not permit artificially underflowing that number.
Users who also want artificial underflow can apply fnormal to the result of beautification.

We regard this as unfinished business, and we would like to steadily increase the justifiability of
beautification. Some other kinds of terms permit easily-computed upper and/or lower bounds on
the magnitude of subexpressions that aren’t generalized polynomials. For example:

• If the cofactor of the numeric coefficient is a product of non-negative powers of sinusoids of
real expressions depending in any way on z, then 1 is an upper bound on the magnitude of
the cofactor.

• Similarly 1 is a lower bound if the coefficient is a product of non-positive powers of such
sinusoids.

• If f(z1, z2, . . . ) is real, then 1 is a lower bound on cosh (f(z1, z2, . . . )).

• If f(z1, z2, . . . ) is real, then π/2 is an upper bound on the magnitude of

arctan (f (z1, z2, . . . )) .

• If g (x) is a real monotonic increasing function of real x and B is a bound on real h(z1, z2, . . . ),
then g (B) is a similar bound on g (h (z1, z2, . . . )).

• The Maple assume facility (or, better, assuming) permits users to declare bounds on variables
or their absolute values. Such bounds could be taken into account when computing the L∗
values. Currently, using the list of inequalities option and not assume or assuming, only a
subset of possible domain restrictions is implemented.

• Some problems have implicit bounds on the magnitudes of variables. For example, it is
reasonable to compute and automatically use the radius of convergence for an upper bound
on the magnitude of a series expansion variable.

Such considerations can allow us to delete other kinds of terms or round their coefficients to fewer
significant digits. For example, with real x and significantDigits ≤ 4 we could eliminate the first and
last terms from

sin (ex) + 10.5 cosh (ln |x|)− arctan

(
x2 + 3

x− 7

)
.

5 Test Results
We begin with some simple tests. Consider the expression

−1 + zn1 − (z2/2)n + zm1 z
k−1
2 /2n (19)

for large n, m, and k, for example n = 49, m = 24, and k = 23. Suppose we wish to see a ‘beautified’
expression to 8 digits:
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Figure 3: The graph of the curve implicitly defined by−1+zn1−(z2/2)n+zm1 z
k−1
2 /2n =

0 for n = 49, m = 24, k = 23. Beautification of the expression has no visual effect on
the curve that results from the new expression.

> AddThenBeautify(-1+z_1^n, -(z_2/(2.0))^n+z_1^m*z_2^(k-1)/2.0^n, 8);

−1 + z1
49 − 1.7763568× 10−15 z2

49 (20)

For this value of the exponent of z2, the mixed-product term is underflowed. Notice that fnormal
with the default underflowThreshold of 102−Digits also removes the pure power of z2 term, which is
a great mistake. The beautified expression (20) has, visually, the same graph of the implicit curve
f(z1, z2) = 0 as the original expression does. See Figure 3. In contrast, also underflowing the pure
power of z2 gives a curve that is vertical through z1 = 1.

If, however, we use k and not k − 1 as the exponent of z2 in the mixed-product term, it does
not (quite) underflow:

−1 + z1
49 + 2.0× 10−15 z1

24z2
23 − 1.7763568× 10−15 z2

49 (21)

Notice that only one digit of the coefficient of the mixed-product term is retained (using AddThen-
Beautify with significantDigits equal to 8, as before). This is analogous to gradual underflow.

5.1 An implicitization example
Let

x =
8 t6 − 12 t5 + 32 t3 + 24 t2 + 12 t

t6 − 3 t5 + 3 t4 + 3 t2 + 3 t+ 1

y =
24 t5 + 54 t4 − 54 t3 − 54 t2 + 30 t

t6 − 3 t5 + 3 t4 + 3 t2 + 3 t+ 1

(22)

and suppose we wish to eliminate t to find an implicit equation for the curve. This example
was taken from [4], who took it from [10]. If we use the discrete method of [4] and in 15 digit
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arithmetic sample at 21 points in −1 ≤ t ≤ 1, say at the Chebyshev points, then we are able
to form a 21 by 10 matrix A, each of whose rows is of the form [1, x, y, x2, xy, y2, x3, x2y, xy2, y3],
for a fixed value of x = x(τi), y = y(τi). We find (by some means, for example by the SVD) an
approximate null vector for this matrix, call it v. Taking the dot product with the symbolic vector
X = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3] gives us our desired implicitization of the parametric curve,
p(x, y) =

∑10
k=1 vkXk, but beautification is desirable. We choose to add B(x, y) = σ1

∑10
k=1 VkXk,

i.e. a polynomial with coefficient 2-norm equal to the largest singular value of the matrix A, to this
polynomial, beautify, and then subtract B(x, y) again, and beautify—this is to set the correct scale
for the result. This scaling reflects the fact that our p(x, y) is really a sum of other polynomials on
a scale set by the matrix A. We have σ1 ≈ 76, 000 and σ10 ≈ 1.8 · 10−12, whereas σ9 ≈ 1.7. The
large gap between σ9 and σ10 gives us confidence in our results. Because σ1 is large, 103 or 104 or
so, we know that our answer is inaccurate, and so we attempt to beautify to 3 or 4 figures fewer
than the 15 we started with.

We have

B(X, Y ) = 1.53413351263386688− 9.82344460770736383X − 53.8378796271358340Y

+ 64.8328102615861326X2 + 357.557113869672548XY

+ 1974.19844968913026Y 2 − 437.635327181094340X3

− 2424.07372931115742X2Y − 13440.6252024712521XY 2

− 74587.7355695390870Y 3

(23)

and the original

p(X, Y ) = 0.0251615737014332479X3 − 0.0000396557505089947736X2Y

− 0.00166554152157790541XY 2 + 0.000164497928055244166Y 3

− 0.311535576041678031X2 − 0.00111036101440457327XY

+ 0.00560467940607550265Y 2 + 0.881943891441780647X

− 0.352777556576721274Y − 8.97264029528418193× 10−13 .

(24)

We form S = p(x, y) +B(x, y), beautify to 15 places, because that is our working precision, and
then form p̂ = S −B(x, y) and beautify at 10, 11, and 12 figures.

The final results are

p̂10(X, Y ) = 0.0251616X3 − 0.0000397X2Y − 0.001666XY 2 + 0.00016Y 3

− 0.31153558X2 − 0.0011104XY + 0.0056047Y 2 + 0.881943891X − 0.35277756Y
(25)

and
p̂11(X, Y ) = 0.02516157X3 − 0.00003966X2Y − 0.0016655XY 2 + 0.000164Y 3

− 0.311535576X2 − 0.00111036XY + 0.00560468Y 2

+ 0.881943891441780536X − 0.352777557Y

(26)

and

p̂12(X, Y ) = 0.025161574X3 − 0.000039656X2Y − 0.00166554XY 2 + 0.0001645Y 3

− 0.311535576041677587X2 − 0.001110361XY + 0.005604679Y 2

+ 0.881943891441780536X − 0.352777556576718609Y ,

(27)
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We see that in all cases the small constant term has vanished, and that requesting fewer digits gives
us a more beautiful answer. All three of curves figures are visually indistinguishable from the original
parametrization on the interval −1 ≤ t ≤ 1, except that the implicit description has another branch
visible in the rectangle −8 ≤ x ≤ 8 and −40 ≤ y ≤ 40. [This is correct—the implicit curve does
indeed have an extra branch; beautification makes no difference here.] We also see some interesting
“jumps” in the number of decimals retained, at differing levels of beautification! Our current controls
are perhaps a bit coarse, because we don’t currently allow fractional or floating-point amounts of
beautification.

Remark Added in proof: At a talk given by the second author on this subject in the January
2011 ORCCA Joint Lab Meeting, Austin Roche asked about the ‘exact’ answer to the implicitization
example. It is

224 y3 − 2268xy2 − 54x2y + 34263x3 + 7632 y2

− 1512xy − 424224x2 − 480384 y + 1200960x . (28)

Comparing this answer to the answer returned by Beautify requires putting them on the same
scale. Using the max norm of the coefficients and making that the same, we see that rounding our
Beautified answer using 12 digits recovers the exact answer. Our program is not intended to recover
exact answers, but it is gratifying when it can do so.

5.2 Examples from Numerical Polynomial Algebra
From [34, p. 72], let

p(x, y) = x3 + 4.865xy2 − y3 + 2.9018x2 − 0.6 · 10−4xy − 8.3896x+ 2y − 17.536 (29)

The command

Beautify(x^3+4.865*x*y^2-y^3+2.9018*x^2-0.6e-4*x*y-8.3896*x+2*y-17.536, 4)

yields
−17.54 + x3 + 2.902x2 + 4.865xy2 − 8.390x− y3 + 2 y ,

which is correct. This is only one of several valid instances of this polynomial, in that any polynomial
whose coefficients are not too distant from the original is a valid instance [34], but in particular
note that the term with the small coefficient is removed.

From [34, p. 156], let

p(x) = 0.000010x6 − 2.345x5 + 5.318x4 − 3.852x3 + 4.295x2 − 1.972x+ 5.321 (30)

and if we apply Beautify to this, with 4 digits, nothing happens. If we also assume that |x| < 2,
then the small leading term is trimmed off:

Beautify(p, 4, [abs(x) < 2]);

yields
−2.345x5 + 5.318x4 − 3.852x3 + 4.295x2 − 1.972x+ 5.321 (31)

which eliminates the largest magnitude root (which is about 105), but changes the other roots by
no more than 7× 10−6.
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6 Summary
Symbolic-numeric expressions produced automatically are often ugly to human eyes. The algorithms
described in this paper use a greedy strategy, making terms 0 and rounding long floating point
numbers to shorter numbers of decimal digits, as can be justified, to make an expression more
comprehensible to a human reader. The constraint used in this paper is that the expression should
not be ‘too different’ when evaluated at any point in the complex plane, except where precluded
by any user-provided magnitude constraints or at singularities. By using linear programming ideas,
we have been able to do so for a reasonably large class of complex-valued expressions. We have also
provided a faster algorithm for univariate problems.

One application where we would like to see this used is in the automatic removal of tiny imaginary
parts of complex-valued seminumerical computations. We find relatively-small imaginary parts quite
vexing, and believe that we are not alone. The next upgrade to our code should address this issue
for a restricted class of inputs, although the code at present already works on some examples if
the user replaces the imaginary unit i with a polynomial variable, say T , and performs reduction
modulo T 2 + 1 followed by beautification.

The most important remaining issue is that the algorithms as implemented do not respect any
kind of symmetry, although in some cases symmetry is automatically improved. It would be very
useful to have a version of these algorithms that exploits declared symmetries or approximate ones
that the algorithm recognizes.

A related issue is the question of domain. If the variables are known to take values only in
some subset of C, this could strongly affect which terms could be underflowed; this is closely
associated with the problem of computing the range of a function. We have provided a limited
implementation handling domains, not ourselves using the full features of the assume facility. There
are high-complexity problems hiding in this issue, however.

Finally, the question of pattern, not just symmetry, puts us squarely in the field of computing
the Kolmogorov complexity; or, more properly, finding the object in a neighbourhood of s with the
minimum Kolmogorov complexity. We believe that much useful work awaits in this area.

“Beauty is truth, truth beauty,—that is all
ye know on earth, and all ye need to know.”

—John Keats, “Ode on a Grecian Urn”
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A Options and Messages in the Maple package
The implementation of our algorithms in Maple supports a number of options. The full calling
sequences are as follows:

• BeautyClinic[Beautify](p, digits, assumptions, options)

• BeautyClinic[AddThenBeautify](p, q, digits, assumptions, options)

The arguments are:

p, q Expressions to be (added and) beautified.

digits (Optional) positive integer specifying the desired accuracy; the default value is the current
setting of the Maple environment variable Digits.

assumptions (Optional) list of inequalities specifying relations between the magnitudes of the oc-
curring variables. The default is the empty list.

options (Optional) sequence of options of the form optionname = value.

The option names allowed are:

output The value should be one of the names float and rational. If the value is rational, then all
processed coefficients are rounded to the rational with smallest denominator that complies
with the required accuracy. If the value is float (the default), then processed coefficients are
rounded to the minimum number of digits so that the required accuracy is guaranteed.

round The value should be true or false. If true (the default), then non-underflowed coefficients are
rounded, otherwise they are left alone. The equation round = true can be shortened to just
round.

underflow The value should be true or false. If true (the default), then coefficients for which the
value 0 complies with the required accuracy are replaced by 0, otherwise they are replaced
by floats with one significant digit or simple fractions. The equation underflow = true can be
shortened to just underflow.

process_exact The value should be true or false. If false (the default), then coefficients that do not
involve floats are left alone, otherwise they are replaced by their floating point value before the
algorithm begins. The equation process_exact = true can be shortened to just process_exact.

A.1 Messages
The implementation prints a few warning messages in some situations, and it can also use Maple’s
infolevel facility. That is, if the user sets infolevel[BeautyClinic] to a positive integer, some extra
messages are printed; more for higher values. All messages and warnings relate to the assumptions
argument. What follows is an inventory of the messages.
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• A message ignoring assumption that depends on variables that do not occur in the expression can
be printed in the appropriate case. This is relatively common, since we recursively call the
main routine for polynomial subexpressions, passing along all assumptions for all variables,
including ones that may not occur in that particular subexpression. Thus this message is seen
only when infolevel[BeautyClinic] ≥ 4.

• A warning ignoring assumption of an unsupported type is printed if the left hand side of the
inequality divided by the right hand side does not evaluate to a product of real numbers and
(real powers of)(absolute values of) the variables. This is a true Maple warning that is always
issued if it obtains.

• The implementation performs a certain amount of interpretation on the assumptions, in order
to make it easier for the user to type inequalities they intend. In particular, inequalities
such as z < 1 are interpreted as |z| < 1. Thus, for every assumption, a message interpreting
assumption a as b can be printed, where a is the original assumption passed in and b is an
inequality where the left hand side is a product of real powers of absolute values of variables
and the left hand side is a floating point constant. Whether this is a true warning or a merely
a message that shows up for infolevel[BeautyClinic] ≥ 3 depends on the following heuristic: It’s
a warning if and only if

– variables outside abs-functions occur on the greater-than side and the less-than side is
negative; or

– variables outside abs-functions occur on the less-than side and the greater-than side is
positive; or

– variables outside abs-functions occur on both sides of the inequality. (There may be cases
where this doesn’t deserve a warning, but it’s easy to avoid if the user simply applies the
abs-function to all of their inequalities.)
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